77. Combinations
求从1..n
的组合,和combination sum很像,只是条件略微简单,当k(需要选的数字)减少为0时递归结束
Input: n = 4, k = 2
Output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
public List<List<Integer>> combine(int n, int k) {
// boundary check
if (n <= 0 || k <= 0 || k > n) return new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
dfs(path, res, n, k, 1);
return res;
}
public void dfs(List<Integer> path, List<List<Integer>> res, int n, int k, int pointer) {
if (k == 0) {
res.add(new ArrayList<>(path));
return;
}
for (int i = pointer; i <= n; i++) {
path.add(i);
dfs(path, res, n, k - 1, i + 1);
path.remove(path.size() - 1);
}
}
debug代码:
public List<List<Integer>> combine(int n, int k) {
// boundary check
if (n <= 0 || k <= 0 || k > n) return new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
dfs(n, k, res, path, 1);
return res;
}
private void dfs(int n, int k, List<List<Integer>> res, List<Integer> path, int index) {
if (path.size() == k) {
res.add(new ArrayList<>(path));
return;
}
for (int i = index; i <= n - (k - path.size()) + 1; i++) {
System.out.println("level " + path.size() + " add " + i + " to path " + path);
path.add(i);
dfs(n, k, res, path, i + 1);
System.out.println("remove " + path.get(path.size() - 1));
path.remove(path.size() - 1);
}
}
level 0 add 1 to path []
level 1 add 2 to path [1]
remove 2
level 1 add 3 to path [1]
remove 3
level 1 add 4 to path [1]
remove 4
remove 1
level 0 add 2 to path []
level 1 add 3 to path [2]
remove 3
level 1 add 4 to path [2]
remove 4
remove 2
level 0 add 3 to path []
level 1 add 4 to path [3]
remove 4
remove 3
level 0 add 4 to path []
remove 4